The redis onekey concepts is introduced to reduce traffic to redis
and redis notification traffic.
It modifies the current structure for one call in redis, which are
multiple keys with pre- and postfixes and the callid in between to
one key with the structure "json-<callid>". The value is a json
formatted string with the previous multi-key identifiers in it.
This involved moving all code from fs.(c|h) to recording.(c|h).
We still spoof packets, so the UDP will look like all monologues are coming
over the same port and will probably look like they are all one stream if
you look at the PCAP file.
Command line option is "--recording-dir".
Renamed inner recording spool "recordings" to "pcaps".
This is to avoid name sharing conflicts with the "--recording-dir" command
line option, which specifies the recordings spool directory, and the
"$RECORDING_DIR/recordings" inner directory. Changing the inner directory
name to "pcaps" removes this name collision.
In the process, I changed the function names in fs.h to be consistent with
other functions. The names are structure like "$OBJECT_$VERB".
File system code is now in fs.{h|c}. This includes:
- spool directory setup
- metadata file management
- pcap file creation and writing
Random hex string generation is now in str.h.
We create a metadata file for each call. The metadata files will all end up
in a spool directory for the rtpengine.
Each in-progress file has the format: "rtpengine-meta-$RANDHEX.tmp" and
goes in /tmp/. When a call finishes, it is moved to the spool directory
in sub-directory /var/spool/rtpengine/metadata/ and we change the file
extension to ".txt".
The metadata file contains references to all PCAP recording files associated
with a call, and it includes generic metadata at the tail of the file.
One absolute path for a PCAP file per line, followed by two blank lines,
followed by the metadata passed in to the rtpengine through an external
command.
RTP Engine checks for the spool directory "/var/spool/rtpengine" on startup.
If it's not there, it fails. If it's there, it sets up "metadata" and
"recordings" inner directories. This is where RTP Engine will write call
metadata files and PCAP files.
RTP Engine creates PCAP files for recorded calls on offer answer instead
of initial offer.
We make up bogus values for the nonessential parts of the PCAP, UDP, and
IP headers. We might be able to pull these from other parts of the RTP
Engine, but that information was unnecessary for recording calls so they
can be recorded to audio files.
If you change the packet headers, be really careful about byte order and
datatype size!
- add --subscribe_keyspace list config parameter.
- don't delete foreign calls by timers
- fix synchronization of foreign calls (use a separate redis_notify database)
- fix statistics for control channel calls.
- fix deletion of foreign calls upon del notifications
- update rtpengine-ctl tool
Removes the explicit redis-read-db configuration and reduces the option
to one redis DB and one redis write DB. If only the redis DB is
configured, then it will be used for all operations. If both are
configured, then the redis DB will be used for reading and the write DB
will be used for writing (updates).
Change-Id: I8d5a32c53c9416b514c98d69c3afe7c547e530ad
supports aliasing a local interface multiple times with the same local
address for different advertised addresses
closes#216
Change-Id: I6f98d1a17290b0bb1831e48ad89fc61d8b2d7914
Currently, every rtpengine will subscribe to redis-keyspace notification
so it will receive a notification when an call is inserted. If the call
is not already handeled by the rtpengine, the call will be restored.
The reason for this is to have in-place redundancy. Imagine you have
multiple rtpengines running, eachone will have all calls of the others.
When one rtpengine fails somehow, infrastructure guys use BGP in order to
'move' the IP address from one rtpengine to another. Thisone can handle
the new calls instantly since they're already recovered by
redis-notification feature.
Next step is internally identify those calls in order to prevent some
timers to delete the calls where no RTP flows. Second will be
something we call 'partitioning'. It means that the subscription
to a redis notify will only be for the keyspace a dedicated rtpengine
writes to. This leads to the point that you can make redundancy groups
(partitions) of the rtpengines.
This brings master up to date with branch `rfuchs/socket-rework` at
commit `b1bcc096b7`. The branches have diverged too much for a proper
merge, so this is a manual (squashed) merge.
The old master before this merge can be found in branch
`old-master-before-socket-rework` (commit `82199216b2`).
This is a complete rewrite of all socket handling routines. The most
important functional change is that sockets aren't indiscriminately
bound to INADDR_ANY (or rather in6addr_any), but instead are always
bound to their respective local interface address and with the correct
address family.
Side effects of this are that in multi-homed environments, multiple
sockets must be opened (one per interface address and family) which must
be taken into account when considering RLIMIT_NOFILE values. As a
benefit, this change allows rtpengine to utilize the full UDP port space
per interface address, instead of just one port space per machine.
The socket abstraction also makes it possible to support RTP over TCP in
the future.
Change-Id: If6cf4f42136229490186d2d2482fb4fc140c2b53
* 0 will allow 0 sessions (e.g. can be used for draining rtpengine)
* -1 will disable the feature and will be treated the same way as if
MAX_SESSIONS variable has not been set via configuration file
(or has been set to -1 in configuration file)
* < -1 will not be taken into consideration
* add check for minint range also
RTPengine starts with 1048575 (1<<20 - 1) maximum open files limit.
Make the maximum number of open files configurable using
"rtpengine-ctl set max-open-files 'open_files_num'" command.
Update utils script.