Browse Source

9600 untested

pull/32/head
sq8vps 2 years ago
parent
commit
bb6797b293
2 changed files with 246 additions and 149 deletions
  1. +1
    -0
      Inc/common.h
  2. +245
    -149
      Src/drivers/modem.c

+ 1
- 0
Inc/common.h View File

@ -22,6 +22,7 @@ along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
#define IS_UPPERCASE_ALPHANUMERIC(x) ((((x) >= '0') && ((x) <= '9')) || (((x) >= 'A') && ((x) <= 'Z')))
#define IS_NUMBER(x) (((x) >= '0') && ((x) <= '9'))
#define ABS(x) (((x) > 0) ? (x) : (-x))
#define CRC32_INIT 0xFFFFFFFF


+ 245
- 149
Src/drivers/modem.c View File

@ -69,13 +69,13 @@ along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
#define PLL300_LOCKED_TUNE 0.74f
#define PLL300_NOT_LOCKED_TUNE 0.50f
#define AGC9600_ATTACK 0.08f
#define AGC9600_DECAY 0.0008f
#define DAC_SINE_SIZE 32 //DAC sine table size
#define PTT_ON GPIOB->BSRR = GPIO_BSRR_BS7
#define PTT_OFF GPIOB->BSRR = GPIO_BSRR_BR7
#define DCD_ON (GPIOC->BSRR = GPIO_BSRR_BR13)
#define DCD_OFF (GPIOC->BSRR = GPIO_BSRR_BS13)
struct ModemDemodConfig ModemConfig;
@ -92,9 +92,9 @@ static float baudRate; //baudrate
static uint8_t markStep; //mark timer step
static uint8_t spaceStep; //space timer step
static uint16_t baudRateStep; //baudrate timer step
static int32_t coeffHiI[NMAX], coeffLoI[NMAX], coeffHiQ[NMAX], coeffLoQ[NMAX]; //correlator IQ coefficients
static int16_t coeffHiI[NMAX], coeffLoI[NMAX], coeffHiQ[NMAX], coeffLoQ[NMAX]; //correlator IQ coefficients
static uint8_t dcd = 0; //multiplexed DCD state from both demodulators
static uint32_t lfsr = 0; //LFSR for 9600 Bd
/**
* @brief BPF filter with 2200 Hz tone 6 dB preemphasis (it actually attenuates 1200 Hz tone by 6 dB)
@ -193,7 +193,7 @@ struct DemodState
enum ModemPrefilter prefilter;
struct Filter bpf;
int32_t correlatorSamples[NMAX];
int16_t correlatorSamples[NMAX];
uint8_t correlatorSamplesIdx;
struct Filter lpf;
@ -214,6 +214,9 @@ struct DemodState
int32_t dcdInc;
int32_t dcdDec;
float dcdAdjust;
int16_t peak;
int16_t valley;
};
static struct DemodState demodState[MODEM_MAX_DEMODULATOR_COUNT];
@ -296,6 +299,15 @@ static void setDcd(uint8_t state)
}
}
static inline uint8_t scramble(uint8_t in)
{
//G3RUH scrambling (x^17+x^12+1)
uint8_t bit = ((lfsr & 0x10000) > 0) ^ ((lfsr & 0x800) > 0) ^ (in > 0);
lfsr <<= 1;
lfsr |= bit;
return bit;
}
/**
* @brief ISR for demodulator
@ -343,18 +355,34 @@ void TIM1_UP_IRQHandler(void)
{
TIM1->SR &= ~TIM_SR_UIF;
int32_t sample = 0;
if(ModemConfig.modem == MODEM_9600)
{
if(ModemConfig.usePWM)
sample = currentSymbol ? 90 : 0;
else
sample = currentSymbol ? 15 : 1;
sample = filter(&demodState[0].lpf, sample);
}
else
{
sample = dacSine[dacSineIdx];
dacSineIdx++;
dacSineIdx &= (DAC_SINE_SIZE - 1);
}
if(ModemConfig.usePWM)
{
TIM4->CCR1 = dacSine[dacSineIdx];
TIM4->CCR1 = sample;
}
else
{
GPIOB->ODR &= ~0xF000; //zero 4 oldest bits
GPIOB->ODR |= (dacSine[dacSineIdx] << 12); //write sample to 4 oldest bits
GPIOB->ODR |= (sample << 12); //write sample to 4 oldest bits
}
dacSineIdx++;
dacSineIdx &= (DAC_SINE_SIZE - 1);
}
@ -381,10 +409,17 @@ void TIM3_IRQHandler(void)
TIM1->CNT = 0;
if(currentSymbol) //current symbol is space
TIM1->ARR = spaceStep;
else //mark
TIM1->ARR = markStep;
if(ModemConfig.modem == MODEM_9600)
{
currentSymbol = scramble(currentSymbol);
}
else
{
if(currentSymbol) //current symbol is space
TIM1->ARR = spaceStep;
else //mark
TIM1->ARR = markStep;
}
}
@ -400,34 +435,38 @@ static int32_t demodulate(int16_t sample, struct DemodState *dem)
dem->RMSenergy += ((sample >> 1) * (sample >> 1)); //square the sample and add it to the sum
dem->RMSsampleCount++; //increment number of samples
if(dem->prefilter != PREFILTER_NONE) //filter is used
{
dem->correlatorSamples[dem->correlatorSamplesIdx++] = filter(&dem->bpf, sample);
}
else //no pre/deemphasis
if(ModemConfig.modem != MODEM_9600)
{
dem->correlatorSamples[dem->correlatorSamplesIdx++] = sample;
}
if(dem->prefilter != PREFILTER_NONE) //filter is used
{
dem->correlatorSamples[dem->correlatorSamplesIdx++] = filter(&dem->bpf, sample);
}
else //no pre/deemphasis
{
dem->correlatorSamples[dem->correlatorSamplesIdx++] = sample;
}
dem->correlatorSamplesIdx %= N;
dem->correlatorSamplesIdx %= N;
int64_t outLoI = 0, outLoQ = 0, outHiI = 0, outHiQ = 0; //output values after correlating
int32_t outLoI = 0, outLoQ = 0, outHiI = 0, outHiQ = 0; //output values after correlating
for(uint8_t i = 0; i < N; i++)
{
int32_t t = dem->correlatorSamples[(dem->correlatorSamplesIdx + i) % N]; //read sample
outLoI += t * coeffLoI[i]; //correlate sample
outLoQ += t * coeffLoQ[i];
outHiI += t * coeffHiI[i];
outHiQ += t * coeffHiQ[i];
for(uint8_t i = 0; i < N; i++)
{
int16_t t = dem->correlatorSamples[(dem->correlatorSamplesIdx + i) % N]; //read sample
outLoI += t * coeffLoI[i]; //correlate sample
outLoQ += t * coeffLoQ[i];
outHiI += t * coeffHiI[i];
outHiQ += t * coeffHiQ[i];
}
outHiI >>= 12;
outHiQ >>= 12;
outLoI >>= 12;
outLoQ >>= 12;
sample = ABS(outHiI) + ABS(outHiQ) - ABS(outLoI) - ABS(outLoQ);
}
outHiI >>= 12;
outHiQ >>= 12;
outLoI >>= 12;
outLoQ >>= 12;
uint64_t hi = (outHiI * outHiI) + (outHiQ * outHiQ); //calculate output tone levels
uint64_t lo = (outLoI * outLoI) + (outLoQ * outLoQ);
//DCD using PLL
//PLL is running nominally at 1200 Hz (= baudrate)
@ -443,9 +482,7 @@ static int32_t demodulate(int16_t sample, struct DemodState *dem)
dem->dcdPll = (signed)((unsigned)(dem->dcdPll) + ((unsigned)dem->pll)); //keep PLL ticking at the frequency equal to baudrate
uint8_t dcdSymbol = (hi > lo); //get current symbol
if(dcdSymbol != dem->dcdLastSymbol) //tone changed
if((sample > 0) != dem->dcdLastSymbol) //tone changed
{
if(abs(dem->dcdPll) < dem->dcdInc) //tone change occurred near zero
dem->dcdCounter += dem->dcdInc; //increase DCD counter
@ -457,7 +494,7 @@ static int32_t demodulate(int16_t sample, struct DemodState *dem)
dem->dcdPll = (int)(dem->dcdPll * dem->dcdAdjust); //adjust PLL
}
dem->dcdLastSymbol = dcdSymbol; //store last symbol for symbol change detection
dem->dcdLastSymbol = sample > 0; //store last symbol for symbol change detection
if(dem->dcdCounter > dem->dcdMax) //maximum DCD counter value reached
dem->dcdCounter = dem->dcdMax; //avoid "sticky" DCD and counter overflow
@ -467,10 +504,41 @@ static int32_t demodulate(int16_t sample, struct DemodState *dem)
else //below DCD threshold
dem->dcd = 0; //no DCD
return filter(&dem->lpf, hi - lo) > 0;
}
//TODO: check if demodulator works well after all changes
sample = filter(&dem->lpf, sample);
if(ModemConfig.modem == MODEM_9600)
{
//AGC
if(sample >= dem->peak)
{
dem->peak += (((int32_t)(AGC9600_ATTACK * (float)32768) * (int32_t)(sample - dem->peak)) >> 15);
}
else
{
dem->peak += (((int32_t)(AGC9600_DECAY * (float)32768) * (int32_t)(sample - dem->peak)) >> 15);
}
if(sample <= dem->valley)
{
dem->valley += (((int32_t)(AGC9600_ATTACK * (float)32768) * (int32_t)(sample - dem->valley)) >> 15);
}
else
{
dem->valley += (((int32_t)(AGC9600_DECAY * (float)32768) * (int32_t)(sample - dem->valley)) >> 15);
}
//remove DC component (subtract average value of peaks)
//and normalize to 32768 peak-to-peak (-16384:16384)
//32768 is equal to 1 << 15
if(dem->peak > dem->valley)
{
sample = ((((int32_t)(sample) - ((int32_t)(dem->peak + dem->valley) >> 1)) << 15) / (int32_t)(dem->peak - dem->valley));
}
}
return sample > 0;
}
/**
@ -497,12 +565,16 @@ static void decode(uint8_t symbol, uint8_t demod)
{
dem->syncSymbols <<= 1; //shift recovered (received, synchronized) bit register
uint8_t t = dem->rawSymbols & 0x07; //take last three symbols for sampling. Seems that 1 symbol is not enough, but 3 symbols work well
if(t == 0b111 || t == 0b110 || t == 0b101 || t == 0b011) //if there are 2 or 3 ones, then the received symbol is 1
{
dem->syncSymbols |= 1; //push to recovered symbols register
}
//if there 2 or 3 zeros, no need to add anything to the register
uint8_t sym = dem->rawSymbols & 0x07; //take last three symbols for sampling. Seems that 1 symbol is not enough, but 3 symbols work well
if(sym == 0b111 || sym == 0b110 || sym == 0b101 || sym == 0b011) //if there are 2 or 3 ones, then the received symbol is 1
sym = 1;
else
sym = 0;
if(ModemConfig.modem == MODEM_9600)
sym = scramble(sym); //descramble
dem->syncSymbols |= sym;
//NRZI decoding
if (((dem->syncSymbols & 0x03) == 0b11) || ((dem->syncSymbols & 0x03) == 0b00)) //two last symbols are the same - no symbol transition - decoded bit 1
@ -540,29 +612,23 @@ void ModemTxTestStart(enum ModemTxTestMode type)
setPtt(1); //PTT on
txTestState = type;
//DAC timer
TIM1->PSC = 17; //72/18=4 MHz
TIM1->DIER = TIM_DIER_UIE; //enable interrupt
TIM1->CR1 |= TIM_CR1_CEN; //enable timer
TIM2->CR1 &= ~TIM_CR1_CEN; //disable RX timer
TIM1->CR1 |= TIM_CR1_CEN; //enable DAC timer
NVIC_DisableIRQ(DMA1_Channel2_IRQn); //disable RX DMA interrupt
NVIC_EnableIRQ(TIM1_UP_IRQn); //enable timer 1 for PWM
NVIC_EnableIRQ(TIM1_UP_IRQn); //enable DAC interrupt
if(type == TEST_MARK)
{
TIM1->ARR = markStep;
} else if(type == TEST_SPACE)
}
else if(type == TEST_SPACE)
{
TIM1->ARR = spaceStep;
}
else //alternating tones
{
//enable baudrate generator
TIM3->PSC = 71; //72/72=1 MHz
TIM3->DIER = TIM_DIER_UIE; //enable interrupt
TIM3->ARR = baudRateStep; //set timer interval
TIM3->CR1 = TIM_CR1_CEN; //enable timer
NVIC_EnableIRQ(TIM3_IRQn); //enable interrupt in NVIC
}
@ -573,8 +639,8 @@ void ModemTxTestStop(void)
{
txTestState = TEST_DISABLED;
TIM3->CR1 &= ~TIM_CR1_CEN; //turn off timers
TIM1->CR1 &= ~TIM_CR1_CEN;
TIM3->CR1 &= ~TIM_CR1_CEN; //disable baudrate timer
TIM1->CR1 &= ~TIM_CR1_CEN; //disable DAC timer
TIM2->CR1 |= TIM_CR1_CEN; //enable RX timer
NVIC_DisableIRQ(TIM3_IRQn);
@ -589,14 +655,6 @@ void ModemTransmitStart(void)
{
setPtt(1); //PTT on
TIM1->PSC = 17;
TIM1->DIER |= TIM_DIER_UIE;
TIM3->PSC = 71;
TIM3->DIER |= TIM_DIER_UIE;
TIM3->ARR = baudRateStep;
TIM3->CR1 = TIM_CR1_CEN;
TIM1->CR1 = TIM_CR1_CEN;
TIM2->CR1 &= ~TIM_CR1_CEN;
@ -612,7 +670,6 @@ void ModemTransmitStart(void)
*/
void ModemTransmitStop(void)
{
TIM2->CR1 |= TIM_CR1_CEN;
TIM3->CR1 &= ~TIM_CR1_CEN;
TIM1->CR1 &= ~TIM_CR1_CEN;
@ -628,14 +685,14 @@ void ModemTransmitStop(void)
/**
* @brief Controls PTT output
* @param[in] state 0 - PTT off, 1 - PTT on
* @param state 0 - PTT off, 1 - PTT on
*/
static void setPtt(uint8_t state)
{
if(state)
PTT_ON;
GPIOB->BSRR = GPIO_BSRR_BS7;
else
PTT_OFF;
GPIOB->BSRR = GPIO_BSRR_BR7;
}
@ -646,6 +703,90 @@ void ModemInit(void)
{
memset(demodState, 0, sizeof(demodState));
/**
* TIM1 is used for pushing samples to DAC (R2R or PWM) (clocked at 4 MHz)
* TIM3 is the baudrate generator for TX (clocked at 1 MHz)
* TIM4 is the PWM generator with no software interrupt
* TIM2 is the RX sampling timer with no software interrupt, but it directly calls DMA
*/
RCC->APB2ENR |= RCC_APB2ENR_IOPBEN;
RCC->APB2ENR |= RCC_APB2ENR_IOPCEN;
RCC->APB2ENR |= RCC_APB2ENR_IOPAEN;
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN;
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
GPIOC->CRH |= GPIO_CRH_MODE13_1; //DCD LED on PC13
GPIOC->CRH &= ~GPIO_CRH_MODE13_0;
GPIOC->CRH &= ~GPIO_CRH_CNF13;
GPIOB->CRH &= ~0xFFFF0000; //R2R output on PB12-PB15
GPIOB->CRH |= 0x22220000;
GPIOA->CRL &= ~GPIO_CRL_CNF0; //ADC input on PA0
GPIOA->CRL &= ~GPIO_CRL_MODE0;
GPIOB->CRL |= GPIO_CRL_MODE7_1; //PTT output on PB7
GPIOB->CRL &= ~GPIO_CRL_MODE7_0;
GPIOB->CRL &= ~GPIO_CRL_CNF7;
GPIOB->CRL |= GPIO_CRL_MODE5_1; //2nd DCD LED on PB5
GPIOB->CRL &= ~GPIO_CRL_MODE5_0;
GPIOB->CRL &= ~GPIO_CRL_CNF5;
RCC->CFGR |= RCC_CFGR_ADCPRE_1; //ADC prescaler /6
RCC->CFGR &= ~RCC_CFGR_ADCPRE_0;
ADC1->CR2 |= ADC_CR2_CONT; //continuous conversion
ADC1->CR2 |= ADC_CR2_EXTSEL;
ADC1->SQR1 &= ~ADC_SQR1_L; //1 conversion
ADC1->SMPR2 |= ADC_SMPR2_SMP0_2; //41.5 cycle sampling
ADC1->SQR3 &= ~ADC_SQR3_SQ1; //channel 0 is first in the sequence
ADC1->CR2 |= ADC_CR2_ADON; //ADC on
ADC1->CR2 |= ADC_CR2_RSTCAL; //calibrate ADC
while(ADC1->CR2 & ADC_CR2_RSTCAL)
;
ADC1->CR2 |= ADC_CR2_CAL;
while(ADC1->CR2 & ADC_CR2_CAL)
;
ADC1->CR2 |= ADC_CR2_EXTTRIG;
ADC1->CR2 |= ADC_CR2_SWSTART; //start ADC conversion
//prepare DMA
DMA1_Channel2->CCR |= DMA_CCR_MSIZE_0; //16 bit memory region
DMA1_Channel2->CCR &= ~DMA_CCR_MSIZE_1;
DMA1_Channel2->CCR |= DMA_CCR_PSIZE_0;
DMA1_Channel2->CCR &= ~DMA_CCR_PSIZE_1;
DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_CIRC| DMA_CCR_TCIE; //circular mode, memory increment and interrupt
DMA1_Channel2->CNDTR = 4; //4 samples
DMA1_Channel2->CPAR = (uint32_t)&(ADC1->DR); //ADC data register address
DMA1_Channel2->CMAR = (uint32_t)samples; //sample buffer address
DMA1_Channel2->CCR |= DMA_CCR_EN; //enable DMA
NVIC_EnableIRQ(DMA1_Channel2_IRQn);
//RX sampling timer
TIM2->PSC = 8; //72/9=8 MHz
TIM2->DIER |= TIM_DIER_UDE; //enable calling DMA on timer tick
//TX DAC timer
TIM1->PSC = 17; //72/18=4 MHz
TIM1->DIER |= TIM_DIER_UIE;
//baudrate timer
TIM3->PSC = 71; //72/72=1 MHz
TIM3->DIER |= TIM_DIER_UIE;
if((ModemConfig.modem == MODEM_1200) || (ModemConfig.modem == MODEM_1200_V23))
{
demodCount = 2;
@ -703,6 +844,8 @@ void ModemInit(void)
markFreq = 1300.f;
spaceFreq = 2100.f;
}
TIM2->ARR = 207; //8MHz / 208 =~38400 Hz (4*9600 Hz for 4x oversampling)
}
else if(ModemConfig.modem == MODEM_300)
{
@ -710,7 +853,7 @@ void ModemInit(void)
N = N300;
baudRate = 300.f;
markFreq = 1600.f;
markFreq = 1800.f;
spaceFreq = 1800.f;
demodState[0].pllStep = PLL300_STEP;
demodState[0].pllLockedAdjust = PLL300_LOCKED_TUNE;
@ -728,88 +871,41 @@ void ModemInit(void)
demodState[0].lpf.coeffs = lpf300;
demodState[0].lpf.taps = sizeof(lpf300) / sizeof(*lpf300);
demodState[0].lpf.gainShift = 0; //not important, output is always compared with 0
}
markStep = 4000000 / (DAC_SINE_SIZE * markFreq) - 1;
spaceStep = 4000000 / (DAC_SINE_SIZE * spaceFreq) - 1;
baudRateStep = 1000000 / baudRate - 1;
/**
* TIM1 is used for pushing samples to DAC (R2R or PWM) at 4 MHz
* TIM3 is the baudrate generator for TX running at 1 MHz
* TIM4 is the PWM generator with no software interrupt
* TIM2 is the RX sampling timer with no software interrupt, but it directly calls DMA
*/
RCC->APB2ENR |= RCC_APB2ENR_IOPBEN;
RCC->APB2ENR |= RCC_APB2ENR_IOPCEN;
RCC->APB2ENR |= RCC_APB2ENR_IOPAEN;
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN;
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
GPIOC->CRH |= GPIO_CRH_MODE13_1; //DCD LED on PC13
GPIOC->CRH &= ~GPIO_CRH_MODE13_0;
GPIOC->CRH &= ~GPIO_CRH_CNF13;
GPIOB->CRH &= ~0xFFFF0000; //R2R output on PB12-PB15
GPIOB->CRH |= 0x22220000;
GPIOA->CRL &= ~GPIO_CRL_CNF0; //ADC input on PA0
GPIOA->CRL &= ~GPIO_CRL_MODE0;
GPIOB->CRL |= GPIO_CRL_MODE7_1; //PTT output on PB7
GPIOB->CRL &= ~GPIO_CRL_MODE7_0;
GPIOB->CRL &= ~GPIO_CRL_CNF7;
GPIOB->CRL |= GPIO_CRL_MODE5_1; //2nd DCD LED on PB5
GPIOB->CRL &= ~GPIO_CRL_MODE5_0;
GPIOB->CRL &= ~GPIO_CRL_CNF5;
RCC->CFGR |= RCC_CFGR_ADCPRE_1; //ADC prescaler /6
RCC->CFGR &= ~RCC_CFGR_ADCPRE_0;
ADC1->CR2 |= ADC_CR2_CONT; //continuous conversion
ADC1->CR2 |= ADC_CR2_EXTSEL;
ADC1->SQR1 &= ~ADC_SQR1_L; //1 conversion
ADC1->SMPR2 |= ADC_SMPR2_SMP0_2; //41.5 cycle sampling
ADC1->SQR3 &= ~ADC_SQR3_SQ1; //channel 0 is first in the sequence
ADC1->CR2 |= ADC_CR2_ADON; //ADC on
TIM2->ARR = 416; //8MHz / 416 =~19200 Hz (4*4800 Hz for 4x oversampling)
}
else if(ModemConfig.modem == MODEM_9600)
{
demodCount = 1;
N = N9600;
baudRate = 9600.f;
demodState[0].pllStep = PLL9600_STEP;
demodState[0].pllLockedAdjust = PLL9600_LOCKED_TUNE;
demodState[0].pllNotLockedAdjust = PLL9600_NOT_LOCKED_TUNE;
demodState[0].dcdMax = DCD9600_MAXPULSE;
demodState[0].dcdThres = DCD9600_THRES;
demodState[0].dcdInc = DCD9600_INC;
demodState[0].dcdDec = DCD9600_DEC;
demodState[0].dcdAdjust = DCD9600_PLLTUNE;
ADC1->CR2 |= ADC_CR2_RSTCAL; //calibrate ADC
while(ADC1->CR2 & ADC_CR2_RSTCAL)
;
ADC1->CR2 |= ADC_CR2_CAL;
while(ADC1->CR2 & ADC_CR2_CAL)
;
demodState[0].prefilter = PREFILTER_NONE;
//this filter will be used for RX and TX
demodState[0].lpf.coeffs = lpf9600;
demodState[0].lpf.taps = sizeof(lpf9600) / sizeof(*lpf9600);
demodState[0].lpf.gainShift = 16;
ADC1->CR2 |= ADC_CR2_EXTTRIG;
ADC1->CR2 |= ADC_CR2_SWSTART; //start ADC conversion
TIM2->ARR = 51; //8MHz / 52 =~153600 Hz (4*38400 Hz for 4x oversampling)
}
//prepare DMA
DMA1_Channel2->CCR |= DMA_CCR_MSIZE_0; //16 bit memory region
DMA1_Channel2->CCR &= ~DMA_CCR_MSIZE_1;
DMA1_Channel2->CCR |= DMA_CCR_PSIZE_0;
DMA1_Channel2->CCR &= ~DMA_CCR_PSIZE_1;
TIM2->CR1 |= TIM_CR1_CEN; //enable DMA timer
DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_CIRC| DMA_CCR_TCIE; //circular mode, memory increment and interrupt
DMA1_Channel2->CNDTR = 4; //4 samples
DMA1_Channel2->CPAR = (uint32_t)&(ADC1->DR); //ADC data register address
DMA1_Channel2->CMAR = (uint32_t)samples; //sample buffer address
DMA1_Channel2->CCR |= DMA_CCR_EN; //enable DMA
markStep = 4000000 / (DAC_SINE_SIZE * markFreq) - 1;
spaceStep = 4000000 / (DAC_SINE_SIZE * spaceFreq) - 1;
baudRateStep = 1000000 / baudRate - 1;
NVIC_EnableIRQ(DMA1_Channel2_IRQn);
TIM2->PSC = 17; //72/18=4 MHz
TIM2->DIER |= TIM_DIER_UDE; //enable calling DMA on timer tick
TIM2->ARR = 103; //4MHz / 104 =~38400 Hz (4*9600 Hz for 4x oversampling)
TIM2->CR1 |= TIM_CR1_CEN; //enable timer
TIM3->ARR = baudRateStep;
for(uint8_t i = 0; i < N; i++) //calculate correlator coefficients
{


Loading…
Cancel
Save