Browse Source

fix missing files

aioc
Piotr Wilkon 9 months ago
parent
commit
f0f82233ab
3 changed files with 777 additions and 0 deletions
  1. +168
    -0
      Core/Inc/drivers/config_ll.h
  2. +400
    -0
      Core/Inc/drivers/modem_ll_aioc.h
  3. +209
    -0
      Core/Inc/drivers/modem_ll_bluepill.h

+ 168
- 0
Core/Inc/drivers/config_ll.h View File

@ -0,0 +1,168 @@
/*
Copyright 2020-2025 Piotr Wilkon
This file is part of VP-Digi.
VP-Digi is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
VP-Digi is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef DRIVERS_CONFIG_LL_H_
#define DRIVERS_CONFIG_LL_H_
#include <stdint.h>
#if defined(STM32F103xB) || defined(STM32F103x8)
#include "stm32f1xx.h"
#define CONFIG_ADDRESS (uintptr_t)0x800F000 //64 KiB starting at 0x8000000 minus 4 kiB (two 1024-word pages)
#define CONFIG_PAGE_COUNT 2 //two 1024-word pages
#define CONFIG_PAGE_SIZE 1024 //1024 words per page (2048 bytes)
/**
* @brief Write word to configuration part in flash
* @param[in] address Relative address
* @param[in] data Data to write
* @warning Flash must be unlocked first
*/
static void write(uint32_t address, uint16_t data)
{
FLASH->CR |= FLASH_CR_PG; //programming mode
*((volatile uint16_t*)(address + CONFIG_ADDRESS)) = data; //store data
while (FLASH->SR & FLASH_SR_BSY);; //wait for completion
if(!(FLASH->SR & FLASH_SR_EOP)) //an error occurred
FLASH->CR &= ~FLASH_CR_PG;
else
FLASH->SR |= FLASH_SR_EOP;
}
/**
* @brief Read single word from configuration part in flash
* @param[in] address Relative address
* @return Data (word)
*/
static uint16_t read(uint32_t address)
{
return *(volatile uint16_t*)((address + CONFIG_ADDRESS));
}
static void erase(void)
{
while (FLASH->SR & FLASH_SR_BSY)
;
FLASH->CR |= FLASH_CR_PER; //erase mode
for(uint8_t i = 0; i < CONFIG_PAGE_COUNT; i++)
{
FLASH->AR = CONFIG_ADDRESS + (CONFIG_PAGE_SIZE * i);
FLASH->CR |= FLASH_CR_STRT; //start erase
while (FLASH->SR & FLASH_SR_BSY)
;
if(!(FLASH->SR & FLASH_SR_EOP))
{
FLASH->CR &= ~FLASH_CR_PER;
return;
}
else
FLASH->SR |= FLASH_SR_EOP;
}
FLASH->CR &= ~FLASH_CR_PER;
}
static void unlock(void)
{
FLASH->KEYR = 0x45670123;
FLASH->KEYR = 0xCDEF89AB;
}
static void lock(void)
{
FLASH->CR &= ~FLASH_CR_PG;
FLASH->CR |= FLASH_CR_LOCK;
}
#elif defined(STM32F302xC)
#include "stm32f3xx.h"
#define CONFIG_ADDRESS (uintptr_t)0x801F000 //128 KiB starting at 0x8000000 minus 4 kiB (two 1024-word pages)
#define CONFIG_PAGE_COUNT 2 //two 1024-word pages
#define CONFIG_PAGE_SIZE 1024 //1024 words per page (2048 bytes)
/**
* @brief Write word to configuration part in flash
* @param[in] address Relative address
* @param[in] data Data to write
* @warning Flash must be unlocked first
*/
static void write(uint32_t address, uint16_t data)
{
FLASH->CR |= FLASH_CR_PG; //programming mode
*((volatile uint16_t*)(address + CONFIG_ADDRESS)) = data; //store data
while (FLASH->SR & FLASH_SR_BSY);; //wait for completion
if(!(FLASH->SR & FLASH_SR_EOP)) //an error occurred
FLASH->CR &= ~FLASH_CR_PG;
else
FLASH->SR |= FLASH_SR_EOP;
}
/**
* @brief Read single word from configuration part in flash
* @param[in] address Relative address
* @return Data (word)
*/
static uint16_t read(uint32_t address)
{
return *(volatile uint16_t*)((address + CONFIG_ADDRESS));
}
static void erase(void)
{
while (FLASH->SR & FLASH_SR_BSY)
;
FLASH->CR |= FLASH_CR_PER; //erase mode
for(uint8_t i = 0; i < CONFIG_PAGE_COUNT; i++)
{
FLASH->AR = CONFIG_ADDRESS + (CONFIG_PAGE_SIZE * i);
FLASH->CR |= FLASH_CR_STRT; //start erase
while (FLASH->SR & FLASH_SR_BSY)
;
if(!(FLASH->SR & FLASH_SR_EOP))
{
FLASH->CR &= ~FLASH_CR_PER;
return;
}
else
FLASH->SR |= FLASH_SR_EOP;
}
FLASH->CR &= ~FLASH_CR_PER;
}
static void unlock(void)
{
FLASH->KEYR = 0x45670123;
FLASH->KEYR = 0xCDEF89AB;
}
static void lock(void)
{
FLASH->CR &= ~FLASH_CR_PG;
FLASH->CR |= FLASH_CR_LOCK;
}
#endif
#endif

+ 400
- 0
Core/Inc/drivers/modem_ll_aioc.h View File

@ -0,0 +1,400 @@
/*
Copyright 2020-2025 Piotr Wilkon
This file is part of VP-Digi.
VP-Digi is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
VP-Digi is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef DRIVERS_MODEM_LL_STM32F302_H_
#define DRIVERS_MODEM_LL_STM32F302_H_
#if defined(STM32F302xC)
#define USE_FPU 1 /**< Use FPU - F302 has one */
#define MODEM_LL_DAC_MAX 4095 /**< Maximum value for DAC - 4095 for 12-bit DAC */
#include <stdint.h>
#include "stm32f3xx.h"
/**
* TIM1 is used for pushing samples to DAC (clocked at 18 MHz)
* TIM3 is the baudrate generator for TX (clocked at 18 MHz)
* TIM2 is the RX sampling timer with no software interrupt, but it directly calls DMA
*/
#define MODEM_LL_DMA_INTERRUPT_HANDLER DMA1_Channel2_IRQHandler
#define MODEM_LL_DAC_INTERRUPT_HANDLER TIM1_UP_TIM16_IRQHandler
#define MODEM_LL_BAUDRATE_TIMER_INTERRUPT_HANDLER TIM3_IRQHandler
#define MODEM_LL_DMA_IRQ DMA1_Channel2_IRQn
#define MODEM_LL_DAC_IRQ TIM1_UP_TIM16_IRQn
#define MODEM_LL_BAUDRATE_TIMER_IRQ TIM3_IRQn
#define MODEM_LL_DMA_TRANSFER_COMPLETE_FLAG (DMA1->ISR & DMA_ISR_TCIF2)
#define MODEM_LL_DMA_CLEAR_TRANSFER_COMPLETE_FLAG() (DMA1->IFCR |= DMA_IFCR_CTCIF2)
#define MODEM_LL_BAUDRATE_TIMER_CLEAR_INTERRUPT_FLAG() (TIM3->SR &= ~TIM_SR_UIF)
#define MODEM_LL_BAUDRATE_TIMER_ENABLE() (TIM3->CR1 = TIM_CR1_CEN)
#define MODEM_LL_BAUDRATE_TIMER_DISABLE() (TIM3->CR1 &= ~TIM_CR1_CEN)
#define MODEM_LL_BAUDRATE_TIMER_SET_RELOAD_VALUE(val) (TIM3->ARR = (val))
#define MODEM_LL_DAC_TIMER_CLEAR_INTERRUPT_FLAG (TIM1->SR &= ~TIM_SR_UIF)
#define MODEM_LL_DAC_TIMER_SET_RELOAD_VALUE(val) (TIM1->ARR = (val))
#define MODEM_LL_DAC_TIMER_SET_CURRENT_VALUE(val) (TIM1->CNT = (val))
#define MODEM_LL_DAC_TIMER_ENABLE() (TIM1->CR1 |= TIM_CR1_CEN)
#define MODEM_LL_DAC_TIMER_DISABLE() (TIM1->CR1 &= ~TIM_CR1_CEN)
#define MODEM_LL_ADC_TIMER_ENABLE() (TIM2->CR1 |= TIM_CR1_CEN)
#define MODEM_LL_ADC_TIMER_DISABLE() (TIM2->CR1 &= ~TIM_CR1_CEN)
#define MODEM_LL_DAC_PUT_VALUE(value) (DAC1->DHR12R1 = (value))
static inline void MODEM_LL_DCD_LED_ON(void)
{
GPIOB->BSRR = GPIO_BSRR_BR_8;
GPIOB->BSRR = GPIO_BSRR_BS_9;
}
static inline void MODEM_LL_DCD_LED_OFF(void)
{
GPIOB->BSRR = GPIO_BSRR_BR_8;
GPIOB->BSRR = GPIO_BSRR_BR_9;
}
#define MODEM_LL_SET_TX_ATTENUATOR(state) (GPIOA->BSRR = (state ? GPIO_BSRR_BR_3 : GPIO_BSRR_BS_3))
/**
* @brief Enable PTT
* @param output Output number (AIOC only, meaningless on other platforms)
*/
static inline void MODEM_LL_PTT_ON(uint8_t output)
{
GPIOB->BSRR = GPIO_BSRR_BR_9;
GPIOB->BSRR = GPIO_BSRR_BS_8;
switch (output)
{
case 0:
GPIOA->BSRR = GPIO_BSRR_BS_0;
break;
case 1:
GPIOA->BSRR = GPIO_BSRR_BS_1;
break;
}
}
/**
* @brief Enable PTT
* @param output Output number (AIOC only, meaningless on other platforms)
*/
static inline void MODEM_LL_PTT_OFF(uint8_t output)
{
GPIOB->BSRR = GPIO_BSRR_BR_8;
GPIOB->BSRR = GPIO_BSRR_BR_9;
switch (output)
{
case 0:
GPIOA->BSRR = GPIO_BSRR_BR_0;
break;
case 1:
GPIOA->BSRR = GPIO_BSRR_BR_1;
break;
}
}
/**
* @brief Initialize clocks
*/
static void MODEM_LL_INITIALIZE_RCC(void)
{
RCC->AHBENR |= RCC_AHBENR_GPIOBEN;
RCC->AHBENR |= RCC_AHBENR_GPIOAEN;
RCC->AHBENR |= RCC_AHBENR_ADC12EN;
RCC->APB1ENR |= RCC_APB1ENR_DAC1EN;
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN;
}
/**
* @brief Initialize PTT outputs and LEDs
*/
static void MODEM_LL_INITIALIZE_OUTPUTS(void)
{
/* DCD and PTT LEDs: between PB8 and PB9 */
GPIOB->MODER &= ~GPIO_MODER_MODER8;
GPIOB->MODER |= GPIO_MODER_MODER8_0;
GPIOB->OTYPER &= ~GPIO_OTYPER_OT_8;
GPIOB->BSRR = GPIO_BSRR_BR_8;
GPIOB->MODER &= ~GPIO_MODER_MODER9;
GPIOB->MODER |= GPIO_MODER_MODER9_0;
GPIOB->OTYPER &= ~GPIO_OTYPER_OT_9;
GPIOB->BSRR = GPIO_BSRR_BR_9;
/* PTT: PA0, PA1 */
GPIOA->MODER &= ~GPIO_MODER_MODER0;
GPIOA->MODER |= GPIO_MODER_MODER0_0;
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_0;
GPIOA->BSRR = GPIO_BSRR_BR_0;
GPIOA->MODER &= ~GPIO_MODER_MODER1;
GPIOA->MODER |= GPIO_MODER_MODER1_0;
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_1;
GPIOA->BSRR = GPIO_BSRR_BR_1;
/* PA3: open-drain TX attenuator */
GPIOA->MODER &= ~GPIO_MODER_MODER3;
GPIOA->MODER |= GPIO_MODER_MODER3_0;
GPIOA->OTYPER |= GPIO_OTYPER_OT_3;
GPIOA->BSRR = GPIO_BSRR_BS_3; //open drain = no attenuation by default
}
/**
* @brief Set RX gain
* @param gain New RX gain: 1, 2, 4, 8 or 16
* @note Invalid values have no effect
* @note Only used for AIOC rev. >= 1.2, has no effect on other platforms
*/
static void MODEM_LL_SET_GAIN(uint8_t gain)
{
switch(gain)
{
case 1:
//adc gain=1, switch to follower mode later
OPAMP2->CSR &= ~OPAMP_CSR_PGGAIN; //bias gain=16
OPAMP2->CSR |= OPAMP_CSR_PGGAIN_0 | OPAMP_CSR_PGGAIN_1;
break;
case 2:
OPAMP2->CSR &= ~OPAMP_CSR_PGGAIN; //bias gain=8
OPAMP2->CSR |= OPAMP_CSR_PGGAIN_1;
OPAMP1->CSR &= ~OPAMP_CSR_PGGAIN; //adc gain=2
//3.3%*2*8=52.8%
break;
case 4:
OPAMP2->CSR &= ~OPAMP_CSR_PGGAIN; //bias gain=4
OPAMP2->CSR |= OPAMP_CSR_PGGAIN_0;
OPAMP1->CSR &= ~OPAMP_CSR_PGGAIN; //adc gain=4
OPAMP1->CSR |= OPAMP_CSR_PGGAIN_0;
//3.3%*4*4=52.8%
break;
case 8:
OPAMP2->CSR &= ~OPAMP_CSR_PGGAIN; //bias gain=2
OPAMP1->CSR &= ~OPAMP_CSR_PGGAIN; //adc gain=8
OPAMP1->CSR |= OPAMP_CSR_PGGAIN_1;
//3.3%*8*2=52.8%
break;
case 16:
//bias gain=1, switch to follower mode later
OPAMP1->CSR &= ~OPAMP_CSR_PGGAIN; //adc gain=16
OPAMP1->CSR |= OPAMP_CSR_PGGAIN_0 | OPAMP_CSR_PGGAIN_1;
//3.3%*16*1=52.8%
break;
default:
return;
}
if(1 == gain)
{
//adc gain at 1 (follower), bias gain at 16 (just enable PGA here)
OPAMP1->CSR |= OPAMP_CSR_VMSEL;
OPAMP2->CSR &= ~OPAMP_CSR_VMSEL;
OPAMP2->CSR |= OPAMP_CSR_VMSEL_1;
}
else if(16 == gain)
{
//adc gain at 16 (just enable PGA here), bias gain at 1 (follower)
OPAMP1->CSR &= ~OPAMP_CSR_VMSEL;
OPAMP1->CSR |= OPAMP_CSR_VMSEL_1;
OPAMP2->CSR |= OPAMP_CSR_VMSEL;
}
else
{
//in any other case, enable PGA on both op amps
OPAMP1->CSR &= ~OPAMP_CSR_VMSEL;
OPAMP1->CSR |= OPAMP_CSR_VMSEL_1;
OPAMP2->CSR &= ~OPAMP_CSR_VMSEL;
OPAMP2->CSR |= OPAMP_CSR_VMSEL_1;
}
}
/**
* @brief Initialize ADC
* @return Utilized ADC pointer
*/
static volatile ADC_TypeDef* MODEM_LL_INITIALIZE_ADC(int32_t *bias)
{
//OPAMP2 as ADC bias generator
OPAMP2->CSR |= OPAMP_CSR_FORCEVP; //reference voltage as non-inverting input
OPAMP2->CSR &= ~OPAMP_CSR_VMSEL; //programmable gain amplifier mode
OPAMP2->CSR |= OPAMP_CSR_VMSEL_1;
OPAMP2->CSR &= ~OPAMP_CSR_CALSEL; //reference = 3.3% VDDA
OPAMP2->CSR &= ~OPAMP_CSR_PGGAIN; //x16 gain to get 52.8% VDDA bias
OPAMP2->CSR |= OPAMP_CSR_PGGAIN_0 | OPAMP_CSR_PGGAIN_1;
OPAMP2->CSR &= ~OPAMP_CSR_TSTREF; //make sure reference voltage is enabled
OPAMP2->CSR |= OPAMP_CSR_OPAMPxEN; //enable op amp
//OPAMP1 as ADC preamp
OPAMP1->CSR &= ~OPAMP_CSR_FORCEVP; //make sure reference voltage is not used
OPAMP1->CSR &= ~OPAMP_CSR_VPSEL_1; //PA5 (signal input) as non-inverting inptu
OPAMP1->CSR |= OPAMP_CSR_VPSEL_0;
OPAMP1->CSR |= OPAMP_CSR_VMSEL; //input follower mode for now
OPAMP1->CSR |= OPAMP_CSR_OPAMPxEN; //enable op amp
MODEM_LL_SET_GAIN(1);
/* ADC input: PB2 (ADC2 channel 12) or PA5 via OPAMP1 (ADC1 channel 3) */
GPIOB->MODER |= GPIO_MODER_MODER2;
GPIOA->MODER |= GPIO_MODER_MODER5;
/*/4 prescaler */
RCC->CFGR2 &= ~RCC_CFGR2_ADCPRE12;
RCC->CFGR2 |= RCC_CFGR2_ADCPRE12_DIV4;
//configure ADC1 channel 3 first and check if there is bias (AIOC rev. >= 1.2)
ADC1->CFGR |= ADC_CFGR_CONT;
ADC1->CFGR &= ~ADC_CFGR_EXTEN;
/* 61.5 cycle sampling = 292 kHz */
ADC1->SMPR1 &= ~ADC_SMPR1_SMP3;
ADC1->SMPR1 |= ADC_SMPR1_SMP3_2 | ADC_SMPR1_SMP3_0;
ADC1->SQR1 &= ~ADC_SQR1_SQ1;
ADC1->SQR1 |= (3 << ADC_SQR1_SQ1_Pos); //channel 3
ADC1->SQR1 &= ~ADC_SQR1_L; //single conversion
ADC1->DIFSEL &= ~ADC_DIFSEL_DIFSEL_3;
/* Enable voltage regulator and perform calibration */
ADC1->CR &= ~ADC_CR_ADVREGEN;
ADC1->CR |= ADC_CR_ADVREGEN_0;
HAL_Delay(20);
ADC1->CR &= ~ADC_CR_ADCALDIF;
ADC1->CR |= ADC_CR_ADCAL;
while(ADC1->CR & ADC_CR_ADCAL)
;
HAL_Delay(20);
/* Enable ADC */
ADC1->CR |= ADC_CR_ADEN;
while(!(ADC1->ISR & ADC_ISR_ADRDY))
;
ADC1->CR |= ADC_CR_ADSTART;
*bias = 4325; //ADC bias is around 4325, because the opamp generates the bias at 3.3%*16=52.8% of VDDA
//collect some samples and average them
ADC1->DR;
uint32_t sum = 0;
for(uint8_t i = 0; i < 16; i++)
{
while(!(ADC1->ISR & ADC_ISR_EOC))
;
sum += ADC1->DR;
}
sum /= 16;
//check whether the average is between 40% and 60% of the ADC range, that is, whether there is a proper bias present
if((sum < (uint32_t)(0.4f * 4096.f)) || ((sum > (uint32_t)(0.6f * 4096.f))))
{
//if not, disable ADC1 and set up ADC2 (old AIOC revision)
ADC1->CR |= ADC_CR_ADSTP;
while(ADC1->CR & ADC_CR_ADSTP)
;
ADC1->CR |= ADC_CR_ADDIS;
ADC2->CFGR |= ADC_CFGR_CONT;
ADC2->CFGR &= ~ADC_CFGR_EXTEN;
/* 61.5 cycle sampling = 292 kHz */
ADC2->SMPR2 &= ~ADC_SMPR2_SMP12;
ADC2->SMPR2 |= ADC_SMPR2_SMP12_2 | ADC_SMPR2_SMP12_0;
ADC2->SQR1 &= ~ADC_SQR1_SQ1;
ADC2->SQR1 |= (12 << ADC_SQR1_SQ1_Pos); //channel 12
ADC2->SQR1 &= ~ADC_SQR1_L; //single conversion
ADC2->DIFSEL &= ~ADC_DIFSEL_DIFSEL_12;
/* Enable voltage regulator and perform calibration */
ADC2->CR &= ~ADC_CR_ADVREGEN;
ADC2->CR |= ADC_CR_ADVREGEN_0;
HAL_Delay(20);
ADC2->CR &= ~ADC_CR_ADCALDIF;
ADC2->CR |= ADC_CR_ADCAL;
while(ADC2->CR & ADC_CR_ADCAL)
;
/* Enable ADC */
ADC2->CR |= ADC_CR_ADEN;
while(!(ADC2->ISR & ADC_ISR_ADRDY))
;
ADC2->CR |= ADC_CR_ADSTART;
*bias = 4095; //assume bias to be in the middle in old AIOC revision
return ADC2;
}
else
return ADC1;
}
/**
* @brief Initialize DMA
* @param *buffer Target memory buffer
* @param count Number of words to be copied
* @param *adc Source ADC
*/
static void MODEM_LL_INITIALIZE_DMA(volatile void *buffer, uint16_t count, volatile ADC_TypeDef *adc)
{
/* 16 bit memory region */
DMA1_Channel2->CCR |= DMA_CCR_MSIZE_0;
DMA1_Channel2->CCR &= ~DMA_CCR_MSIZE_1;
DMA1_Channel2->CCR |= DMA_CCR_PSIZE_0;
DMA1_Channel2->CCR &= ~DMA_CCR_PSIZE_1;
/* Enable memory pointer increment, circular mode and interrupt generation */
DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_CIRC | DMA_CCR_TCIE;
DMA1_Channel2->CNDTR = count;
DMA1_Channel2->CPAR = (uintptr_t)&(adc->DR);
DMA1_Channel2->CMAR = (uintptr_t)(buffer);
DMA1_Channel2->CCR |= DMA_CCR_EN;
}
/**
* @brief Initialize primary DAC
*/
static void MODEM_LL_INITIALIZE_DAC(void)
{
DAC1->CR &= DAC_CR_WAVE1;
DAC1->CR &= ~DAC_CR_TEN1;
DAC1->CR |= DAC_CR_BOFF1;
DAC1->CR |= DAC_CR_EN1;
}
static void MODEM_LL_ADC_TIMER_INITIALIZE(void)
{
/* 72 / 9 = 8 MHz */
TIM2->PSC = 8;
/* enable DMA call instead of standard interrupt */
TIM2->DIER |= TIM_DIER_UDE;
}
static void MODEM_LL_DAC_TIMER_INITIALIZE(void)
{
/* 72 / 4 = 18 MHz */
TIM1->PSC = 3;
TIM1->DIER |= TIM_DIER_UIE;
}
static void MODEM_LL_BAUDRATE_TIMER_INITIALIZE(void)
{
/* 72 / 4 = 18 MHz */
TIM3->PSC = 3;
TIM3->DIER |= TIM_DIER_UIE;
}
#define MODEM_LL_ADC_SET_SAMPLE_RATE(rate) (TIM2->ARR = (8000000 / (rate)) - 1)
#define MODEM_LL_DAC_TIMER_CALCULATE_STEP(frequency) ((18000000 / (frequency)) - 1)
#define MODEM_LL_BAUDRATE_TIMER_CALCULATE_STEP(frequency) ((18000000 / (frequency)) - 1)
#endif
#endif /* DRIVERS_MODEM_LL_H_ */

+ 209
- 0
Core/Inc/drivers/modem_ll_bluepill.h View File

@ -0,0 +1,209 @@
/*
Copyright 2020-2025 Piotr Wilkon
This file is part of VP-Digi.
VP-Digi is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
VP-Digi is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef DRIVERS_MODEM_LL_STM32F103_H_
#define DRIVERS_MODEM_LL_STM32F103_H_
#if defined(STM32F103xB) || defined(STM32F103x8)
#include <stdint.h>
#include "stm32f1xx.h"
#define MODEM_LL_DAC_MAX 255 /**< PWM max value */
/**
* TIM1 is used for pushing samples to DAC (R2R or PWM) (clocked at 18 MHz)
* TIM3 is the baudrate generator for TX (clocked at 18 MHz)
* TIM4 is the PWM generator with no software interrupt
* TIM2 is the RX sampling timer with no software interrupt, but it directly calls DMA
*/
#define MODEM_LL_DMA_INTERRUPT_HANDLER DMA1_Channel2_IRQHandler
#define MODEM_LL_DAC_INTERRUPT_HANDLER TIM1_UP_IRQHandler
#define MODEM_LL_BAUDRATE_TIMER_INTERRUPT_HANDLER TIM3_IRQHandler
#define MODEM_LL_DMA_IRQ DMA1_Channel2_IRQn
#define MODEM_LL_DAC_IRQ TIM1_UP_IRQn
#define MODEM_LL_BAUDRATE_TIMER_IRQ TIM3_IRQn
#define MODEM_LL_DMA_TRANSFER_COMPLETE_FLAG (DMA1->ISR & DMA_ISR_TCIF2)
#define MODEM_LL_DMA_CLEAR_TRANSFER_COMPLETE_FLAG() (DMA1->IFCR |= DMA_IFCR_CTCIF2)
#define MODEM_LL_BAUDRATE_TIMER_CLEAR_INTERRUPT_FLAG() (TIM3->SR &= ~TIM_SR_UIF)
#define MODEM_LL_BAUDRATE_TIMER_ENABLE() (TIM3->CR1 = TIM_CR1_CEN)
#define MODEM_LL_BAUDRATE_TIMER_DISABLE() (TIM3->CR1 &= ~TIM_CR1_CEN)
#define MODEM_LL_BAUDRATE_TIMER_SET_RELOAD_VALUE(val) (TIM3->ARR = (val))
#define MODEM_LL_DAC_TIMER_CLEAR_INTERRUPT_FLAG (TIM1->SR &= ~TIM_SR_UIF)
#define MODEM_LL_DAC_TIMER_SET_RELOAD_VALUE(val) (TIM1->ARR = (val))
#define MODEM_LL_DAC_TIMER_SET_CURRENT_VALUE(val) (TIM1->CNT = (val))
#define MODEM_LL_DAC_TIMER_ENABLE() (TIM1->CR1 |= TIM_CR1_CEN)
#define MODEM_LL_DAC_TIMER_DISABLE() (TIM1->CR1 &= ~TIM_CR1_CEN)
#define MODEM_LL_ADC_TIMER_ENABLE() (TIM2->CR1 |= TIM_CR1_CEN)
#define MODEM_LL_ADC_TIMER_DISABLE() (TIM2->CR1 &= ~TIM_CR1_CEN)
#define MODEM_LL_DAC_PUT_VALUE(value) (TIM4->CCR1 = (value))
static inline void MODEM_LL_DCD_LED_ON(void)
{
GPIOC->BSRR = GPIO_BSRR_BR13;
GPIOB->BSRR = GPIO_BSRR_BS5;
}
static inline void MODEM_LL_DCD_LED_OFF(void)
{
GPIOC->BSRR = GPIO_BSRR_BS13;
GPIOB->BSRR = GPIO_BSRR_BR5;
}
#define MODEM_LL_PTT_ON(output) (GPIOB->BSRR = GPIO_BSRR_BS7)
#define MODEM_LL_PTT_OFF(output) (GPIOB->BSRR = GPIO_BSRR_BR7)
static void MODEM_LL_INITIALIZE_RCC(void)
{
RCC->APB2ENR |= RCC_APB2ENR_IOPBEN;
RCC->APB2ENR |= RCC_APB2ENR_IOPCEN;
RCC->APB2ENR |= RCC_APB2ENR_IOPAEN;
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN;
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM4EN;
}
static void MODEM_LL_INITIALIZE_OUTPUTS(void)
{
/* DCD LEDs: PC13 (cathode driven - built-in LED on Blue Pill) and PB5 (anode driven) */
GPIOC->CRH |= GPIO_CRH_MODE13_1;
GPIOC->CRH &= ~GPIO_CRH_MODE13_0;
GPIOC->CRH &= ~GPIO_CRH_CNF13;
GPIOB->CRL |= GPIO_CRL_MODE5_1;
GPIOB->CRL &= ~GPIO_CRL_MODE5_0;
GPIOB->CRL &= ~GPIO_CRL_CNF5;
/* PTT: PB7 */
GPIOB->CRL |= GPIO_CRL_MODE7_1;
GPIOB->CRL &= ~GPIO_CRL_MODE7_0;
GPIOB->CRL &= ~GPIO_CRL_CNF7;
}
/**
* @brief Initialize ADC
* @return Utilized ADC pointer
*/
static volatile ADC_TypeDef* MODEM_LL_INITIALIZE_ADC(int32_t *bias)
{
/* ADC input: PA0 */
GPIOA->CRL &= ~GPIO_CRL_CNF0;
GPIOA->CRL &= ~GPIO_CRL_MODE0;
/*/6 prescaler */
RCC->CFGR |= RCC_CFGR_ADCPRE_1;
RCC->CFGR &= ~RCC_CFGR_ADCPRE_0;
ADC1->CR2 |= ADC_CR2_CONT;
ADC1->CR2 |= ADC_CR2_EXTSEL;
ADC1->SQR1 &= ~ADC_SQR1_L;
/* 41.5 cycle sampling */
ADC1->SMPR2 |= ADC_SMPR2_SMP0_2;
ADC1->SQR3 &= ~ADC_SQR3_SQ1;
ADC1->CR2 |= ADC_CR2_ADON;
/* calibrate */
ADC1->CR2 |= ADC_CR2_RSTCAL;
while (ADC1->CR2 & ADC_CR2_RSTCAL)
;
ADC1->CR2 |= ADC_CR2_CAL;
while (ADC1->CR2 & ADC_CR2_CAL)
;
ADC1->CR2 |= ADC_CR2_EXTTRIG;
ADC1->CR2 |= ADC_CR2_SWSTART;
*bias = 4095;
return ADC1;
}
/**
* @brief Initialize DMA
* @param *buffer Target memory buffer
* @param count Number of words to be copied
* @param *adc Source ADC
*/
static void MODEM_LL_INITIALIZE_DMA(volatile void *buffer, uint16_t count, volatile ADC_TypeDef *adc)
{
/* 16 bit memory region */
DMA1_Channel2->CCR |= DMA_CCR_MSIZE_0;
DMA1_Channel2->CCR &= ~DMA_CCR_MSIZE_1;
DMA1_Channel2->CCR |= DMA_CCR_PSIZE_0;
DMA1_Channel2->CCR &= ~DMA_CCR_PSIZE_1;
/* enable memory pointer increment, circular mode and interrupt generation */
DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_CIRC | DMA_CCR_TCIE;
DMA1_Channel2->CNDTR = count;
DMA1_Channel2->CPAR = (uintptr_t)&(adc->DR);
DMA1_Channel2->CMAR = (uintptr_t)buffer;
DMA1_Channel2->CCR |= DMA_CCR_EN;
}
/**
* @brief Initialize DAC
*/
static void MODEM_LL_INITIALIZE_DAC(void)
{
/* PWM output: PB6 */
GPIOB->CRL |= GPIO_CRL_CNF6_1;
GPIOB->CRL |= GPIO_CRL_MODE6;
GPIOB->CRL &= ~GPIO_CRL_CNF6_0;
/* 72 / 3 = 24 MHz to provide 8 bit resolution at around 100 kHz */
TIM4->PSC = 2;
/* 24 MHz / 256 = 94 kHz */
TIM4->ARR = 255;
TIM4->CCMR1 |= TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2;
TIM4->CCER |= TIM_CCER_CC1E;
TIM4->CR1 |= TIM_CR1_CEN;
}
static void MODEM_LL_ADC_TIMER_INITIALIZE(void)
{
/* 72 / 9 = 8 MHz */
TIM2->PSC = 8;
/* enable DMA call instead of standard interrupt */
TIM2->DIER |= TIM_DIER_UDE;
}
static void MODEM_LL_DAC_TIMER_INITIALIZE(void)
{
/* 72 / 4 = 18 MHz */
TIM1->PSC = 3;
TIM1->DIER |= TIM_DIER_UIE;
}
static void MODEM_LL_BAUDRATE_TIMER_INITIALIZE(void)
{
/* 72 / 4 = 18 MHz */
TIM3->PSC = 3;
TIM3->DIER |= TIM_DIER_UIE;
}
#define MODEM_LL_ADC_SET_SAMPLE_RATE(rate) (TIM2->ARR = (8000000 / (rate)) - 1)
#define MODEM_LL_DAC_TIMER_CALCULATE_STEP(frequency) ((18000000 / (frequency)) - 1)
#define MODEM_LL_BAUDRATE_TIMER_CALCULATE_STEP(frequency) ((18000000 / (frequency)) - 1)
#endif
#endif /* DRIVERS_MODEM_LL_H_ */

Loading…
Cancel
Save